

Компания ГРИНС предлагает полный спектр износостойких материалов и готовых твердосплавных изделий для производителей буровых долот, инструмента для ЗБС и КРС, элементов КНБК, производителей нефтяных насосов и другого нефтегазового оборудования.


Специалисты компании ГРИНС предоставляют полное техническое сопровождение продукции у клиентов с отработкой требуемых параметров качества. Производство предлагаемой продукции сертифицировано по международному стандарту ISO 9001.

Содержание:

Износостойкие наплавочные материалы	5
Наплавочные порошки на основе вольфрама	6
Наплавочные порошки и прутки на основе кобальта	12
Наплавочные прутки в форме трубки	13
Твердосплавная дробленная крошка	14
Композитные наплавочные прутки	15
Наплавочные порошки на основе никеля и карбида вольфрама	17
Гибкий шнур на никелевой основе	19
Твердосплавные изделия	21
Твердосплавные зубки, пластины и вставки	22
PDC резцы	24
Гидромониторные насадки и втулки	26
Клапанные пары шар/седло	26
Втулки и уплотнительные кольца для насосов	29
Изделия из бериллиевой бронзы	31
Контактная информация	32
	BR

Износостойкие наплавочные материалы

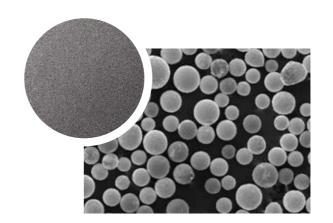
Повышение износостойкости рабочих поверхностей инструмента, деталей машин и механизмов, работающих в условиях интенсивного абразивного износа, является важнейшей задачей увеличения ресурса работы оборудования. Основными методами поверхностного упрочнения являются наплавка и напыление рабочих поверхностей износостойкими материалами.

Компания ГРИНС предлагает порошки для плазменной, газопламенной, лазерной наплавки

и высокоскоростного газопламенного напыления; композитные и трубчатые прутки, шнуры для ацетилена-кислородной наплавки, карбид вольфрамовую крошку различной фракции.

Широкое применение данные материалы нашли в производстве буровых долот, инструмента для ЗБС и КРС, элементов КНБК и другого оборудования для нефтегазовой и горнодобывающей отраслей. Ассортимент наплавочных материалов постоянно расширяется.

Наплавочные порошки на основе вольфрама


Порошок карбида вольфрама со сферической формой зерна

Марка: CWC

Внешний вид: тёмно-серый порошок

Применение: широко применяется для газотермического напыления и наплавки на рабочие

поверхности буровых коронок и долот PDC

Химический состав, %(вес.):

W	С общий	С своб.	Ti	Mo+ Co+ Ni	Cr	٧	Si	Fe	0
Баланс	3,48-4,1	≤0.08	≤0.01	≤0.2	≤0.1	≤0.05	≤0.02	≤0.5	≤0.05

Физико-механические свойства:

Размерный диапазон в mesh	Размерный диапазон в mm	Плотность г/см³	Микротвёрдость Кг/мм ²
-60 +80	-0.25 +0.18		
-60 +100	-0.25 +0.15		
-100 +200	-0.15 +0.075	15.0 1/.7	2700 2200
-200 +325	-0.075 +0.045	15.8 – 16.7	2700–3300
-100 +325	-0.15 +0.045		
-325	-0+045		

Порошок спечённого твёрдого сплава

Внешний вид: круглые гранулы серого цвета

Свойства: кроме высокой износостойкости

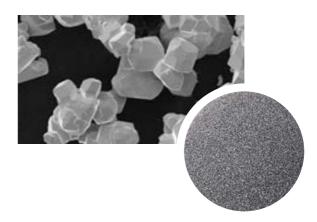
обладает высокой стойкостью к ударам

Применение: применяется для упрочнения поверхностей, работающих в условиях ударно-

истирающих нагрузок

Марки, химический состав и физико-механические свойства:

Междуна родная маркировка	Марка производителя	Химический состав, %	Размерный диапазон mesh, µm	Насыпная плотность г/см ³	Текучесть сек/50г
WC-6Co	YG6	Co - 6.0 WC - 94.0	-80 +325	7.6	11
WC-12Co	YG12	Co - 12.0 WC - 88.0	-100 +325 -270 +325	5.36	12
WC-17Co	YG17	Co - 17.0 WC - 83.0	-270 + 325 -45µm+15µm	5.46	12
WC-10Ni	YN10	Ni - 10.0 WC - 90.0	-45µm+15µm	5.26	11
WC-10Co-4Cr	YG10Cr4	Co - 10.0 Cr - 4.0 WC - 86.0	-45µm+15µm	5.46	12


Порошок вольфрама Масго

Марка: Macro W

Внешний вид: ярко-серый порошок

Применение: для производства алмазных буровых

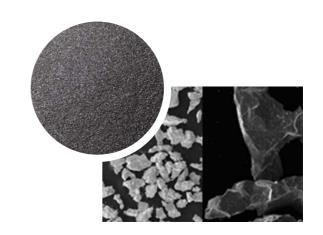
долот и термически напыляемых покрытий

Химический состав, % (вес.):

W	0	Ti	Ni	Fe	Мо	Al
Баланс	≤0.05	≤0.001	≤0.02	≤0.03	≤0.001	≤0.001
Mg	Ca	Co	Cr	Cu	Si	
≤0.001	≤0.01	≤0.01	≤0.001	≤0.01	≤0.01	

Физические свойства:

Параметр	Значение			
Насыпная плотность	7.3-8.9 г/см ³			
Плотность после утряски	9.0-10.5 г/см ³			
Текучесть	≼12 сек/50г			
Диапазон размера частиц при просеве	-60 +325 mesh			


Порошок карбида вольфрама Масго

Марка: Macro WC

Внешний вид: светло-серый порошок

Применение: для покрытий изнашиваемых частей

в буровом инструменте

Химический состав:

W	Собщ	Ссвоб	Ni	Co	Ti	Та	Nb	Si	Fe
Баланс	6.1-6.2	≤0.06	2.5-5.5	2.5-5.5	≤0.15	≤0.03	≤0.03	≤0.02	≤0.25

Физико-механические свойства:

Размеры сетки mesh	Размерный диапазон, мм	Насыпная плотность г/см³	Микротвёрдость Кг/мм ²
-40 +60	-0.425 +0.25	6.6-7.4	
-60 +80	-0.25 +0.18	6.6-7.2	
-80 +200	-0.18 +0.075	6.4-7.0	1600-1900
-200 +400	-0.075 +0.038	6.0-6.6	
-325	-0.045	5.8-6.4	

Порошок литого дроблённого карбида вольфрама

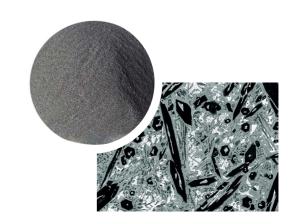
Внешний вид: серебристо-серый порошок с частицами призматической формы

Применение: для упрочнения поверхностей подвергающихся истиранию газотермическими другими методами

Диапазон размера частиц:

Сорт	Размер сетки в mesh	Размер частиц в mm
YZ5-10f	-5 +10	-4.00 +1.70
YZ10-20f	-10 +20	-1.70 +0.85
YZ20-30f	-20 +30	-0.85 +0.60
YZ30-40f	-30 +40	-0.60 +0.425
YZ40-60f	-40 +60	-0.425 +0.25
YZ60-80f	-60 +80	-0.25 +0.18
YZ65-100f	-65 +100	-0.21 +0.15
YZ100-140f	-100 +140	-0.15 +0.106
YZ150-200f	-150 +200	-0.106 +0.075
YZ80-200f	-80 +200	-0.18 +0.075
YZ100-200f	-100 +200	-0.15 +0/075
YZ200-400f	-200 +400	-0.075 +0.038
YZ270-600f	-270 +600	-0/053 +0.020

Химический состав литого карбида вольфрама:


	овные оненты			Содержани	е примесеі	й, max %		
W	Собщ	Ссв	Хлориро ванные остатки	Fe	Cr	V	Ti+ Ta+ Nb	Остальные примеси (Co,Ni,Mo и др.)
95-96	3.90±0.1	0.08	0.1	0.50	0.20	0.20	0.20	0.30

Физико-механические свойства литого карбида вольфрама:

Сорт	Твёрдость HRA	Микро твёрдость Кг/мм ²	TRS Кг/мм²	Плотность г/см ³	Температура Плавления °С	Относительная износостойкость по отношению к сплаву YG6 как 1
YZ	93.0-93.7	2500-3000	48.2	16.5	2525	3.46-4.10

Наплавочные порошки и прутки на основе кобальта


Порошки и прутки на основе кобальта обеспечивают превосходную механическую износостойкость изделий при высоких температурах, сопротивляемость кавитации, коррозии, эрозии, абразивному износу и истиранию. Низкоуглеродистые порошки рекомендуются для использования в условиях кавитации, износа от трения скольжения или умеренного истирания. Порошки с более высоким содержанием углерода, как правило, выбираются для использования в условиях абразивного износа, сильного истирания или эрозии. Порошки и прутки наносятся на поверхность изделий методом наплавки. Порошки – плазменной или газо-термической, прутки – ацетиленокислородной.

		Химический состав, %							Твер-			
Марка	Аналог	С	Cr	Si	W	Ni	Fe	Mn	Мо	Со	Осталь- ные	дость, HRC
Gr-Co1	Stellite 1	2.4	30.0	1.0	12.0	≤ 3.0	≤ 3.0	≤ 1.0	≤ 1.0	Bal	< 1.0	48-58
Gr-Co3	Stellite 3	2.3	30.0	1.0	12.0	≤ 3.0	≤ 3.0			Bal	< 1.0	48-54
Gr-Co6	Stellite 6	1.2	29.0	1.0	4.5	≤ 3.0	≤ 3.0	≤ 1.0	≤ 1.0	Bal	< 1.0	48-54
Gr-Co12	Stellite 12	1.4	30.0	1.4	8.5	≤ 3.0	≤ 3.0	≤ 1.0	≤ 1.0	Bal	< 1.0	44-50
Gr-Co20	Stellite 20	2.5	32.0	1.0	18.0	≤ 3.0	≤ 3.0	≤ 1.0	≤ 1.0	Bal	< 1.0	52-57
Gr-Co21	Stellite 21	0.2	28.0	2.0	0.2	≤ 3.0	2.0	≤ 1.0	5.5	Bal	< 1.0	20-35
Gr-Co25	Stellite 25	0.1	20.0	1.0	15.0	10.0	≤ 3.0	≤ 2.0	≤ 1.0	Bal	< 1.0	Coldhard
Gr-Co31	Stellite 31	0.5	26.0	1.0	8.0	10.5	2.0	≤ 1.0		Bal	< 1.0	28-34
Gr-Co157	Stellite 157	0.1	22.0	1.5	5.0	≤ 3.0	≤ 3.0	≤ 0.5	≤ 1.0	Bal	B 2.5	50-56
Gr-Co158	Stellite 158	8.0	29.0	1.5	5.5	≤ 3.0	≤ 3.0	≤ 1.0	≤ 1.0	Bal	B 0.8	40-46
Gr-Co190	Stellite 190	3.2	26.0	1.0	14.0	≤ 1.0	≤ 3.0	≤ 1.0	≤ 1.0	Bal	< 1.0	54-60
Gr-CoF	Stellite F	1.7	26.0	1.2	12.0	22.0	≤ 3.0	≤ 1.0	≤ 1.0	Bal	< 1.0	38-44

Размер частиц порошка -150 +50мкм

Размер прутков Ø4.0...6.0мм длина 1000мм

Наплавочные прутки в форме трубки

Представляют собой закатанный в стальную трубку литой дроблёный карбид вольфрама. Применяются для наплавки на изнашиваемые поверхности ацетилено-кислородным и электродуговым способом.

Марка	Размер карбида (mesh)	Размер стальн	ой трубки, mm	Соотноше	ние %(вес)
		Диаметр	Длина	WC	Стальная трубка
YZ20-30g	-20 +30	Φ7±0.5	390±0.5	60-65	35-40
YZ30-40g	-30 +40	Φ6±0.5	390±0.5	60-65	35-40
YZ40-60g	-40 +60	Ф5±0.5	390±0.5	60-65	35-40
YZ60-80g	-60 +80	Φ4±0.5	390±0.5	60-65	35-40

КОМПОНЕНТНЫЙ СОСТАВ НАПОЛНИТЕЛЯ ТРУБКИ МОЖЕТ БЫТЬ ИЗМЕНЕН ПО ТРЕБОВАНИЮ ЗАКАЗЧИКА.

Трубки с наполнителями более сложного, многокомпонентного состава имеют повышенные характеристики ударной прочности и применяются для поверхностного упрочнения инструмента, испытывающего наряду с истирающими и ударные нагрузки. В состав наполнителя наряду с литым дроблёным карбидом вольфрама входят сферический карбид вольфрама, сферический спечённый твёрдый сплав, макрокристаллин, а также раскислитель, улучшающий качество наплавки.

Широкое применение такие материалы нашли в производстве буровых шарошечных долот.

Твердосплавная крошка

1,6-3,2;

3,2-4,8;

4,8-6,4;

6,4-8,0.

Крошка представляет собой дробленый до заданного размера твердый сплав, состав и свойства которого приведены в таблице:

Марка	Твердость HRA	Прочность при изгибе, МПа	Температура плавления, С°	Плотность, г/см ³
YG8	89.5	1840	1310	14.65-14.85
		Хим.состав:		
WC	Co	Fe		
92%	8%	1%		

ВОЗМОЖНО ИЗГОТОВЛЕНИЕ ПРЕССОВАННОЙ «КРОШКИ» В ВИДЕ ПИРАМИД (ТЕТРАЭДРОВ), ПРИЗМ И ДРУГИХ ФОРМ ПО СПЕЦИФИКАЦИЯМ ГРИНС ИЛИ ЧЕРТЕЖАМ ЗАКАЗЧИКА.

Применение: изготовление и восстановление скважинного инструмента (фонарей-стабилизаторов, расширителей, разбуривателей, фрезеров для обсадных труб и другого инструмента для фрезерования)

Композитные твердосплавные прутки

Предназначены для нанесения очень прочного защитно-режущего покрытия, состоящего изплотной массы крошкитвёрдого сплава в прочной самофлюсующейся матрице из медно-никельцинкового сплава.

Состав и свойства:

- 1. Содержание твердосплавной крошки: 70%, 65%, 50%
- 2. Припой 30%, 35%, 50%
- 3. С флюсом или без флюса по требованию клиентов
- 4. Припой в виде прутков и флюс в виде порошка может поставляться отдельно по заказу клиента

Обозначение:

Марка	Размер зерна, мм	Диаметр прутка, мм	Длина прутка, мм	Вес прутка, кг	Вес одной упаковки, кг	Цвето вой код
CR1.6G	1.6-3.2	12.0	440+/-5	0.40	20.0	Синий
CR3.2G	3.2-4.8	12.0	440+/-5	0.40	20.0	Зелёный
CR4.8G	4.8-6.4	12.0	440+/-5	0.40	20.0	Жёлтый
CR6.4G	6.4-8.0	12.0	440+/-5	0.40	20.0	Красный
CR8.0G	8.0-9.5	12.0	440+/-5	0.40	20.0	Белый
CR9.5G	9.5-11.0	12.0	440+/-5	0.40	20.0	Чёрный

Примечание: Вес одного прутка и вес упаковки ориентировочный. Он может изменяться в зависимости от соотношения «твёрдый сплав – припой».

Состав и свойства припоя:

Cu	Ni	Fe	Mn	Sn	Si	Р	Zn
49 - 52%	9-11%	<0.5%	<0.5%	<0.5%	<0.5%	<0.25%	Баланс

Предел прочности: 600МПа

Твёрдость: 120 НВ

Состав и свойства твердосплавной крошки:

Содержание кобальта: 5.5-10.0%

Твёрдость: 86.0-92.0 HRA

Рекомендации по применению:

Напайку прутка производить ацетиленокислородны способом.

Рекомендуемый диаметр горелки: 6-9 мм. Темпе-

ратура плавления: 910-935 °C

Износостойкие порошки для высокоскоростного газотермического напыления и плазменной наплавки

Физико-механические свойства:

Марка	Химический состав	Размер частиц, мкм	Насыпная плотность, Г/см3	Твёрдость HV0.3	Прочность сцепления MPa	Порис тость %	Максималь ная рабочая температура	Характеристики и применение
WC-10Co- 4Cr	86%WC - 10%Co-4%Cr		4.4 - 5.2	1000 – 1400				1. Великолепное сопротивление эрозии и
WC - 12Co	88%WC - 12%Co		0.12	950 – 1350			50000	износостойкость 2. Отличная адгезионная
WC-17Co	83%WC - 17%Co		≱ 4.0	900 - 1200			500°C	прочность 3. Использование
WC - 10Ni	90%WC - 10%Ni		≽4.3					для нефтепровода,
WC-12Ni	88%WC – 12%Ni		4.4 - 5.2	950 – 1350				деталей клапанов, бумагоделательных роликов, стальных роликов
WC- 20Cr3C2- 7Ni	73%WC – 20% Cr3C2 – 7%Ni	-45/+15 -53/+15 -38/+15 -25/+5	≽3.7	1000 - 1400	≽70	<1	750°C	1.великолепное сопротивление окислению, сопротивление износу 2. высокая ударопрочность 3. Отличная адгезионная прочность 4. Используется для клапанов, корпусов насосов и стальных конструкций
Cr3C2 - 10NiCr	90%Cr3C2 - 10% (NiCr)		≥2.3	850 - 1150				Великолепная термостойкость, износостойкость,
Cr3C2 – 20NiCr	80%Cr3C2 - 20% NiCr		≥ 2.3	850 - 1100			870°C	стойкость к окислению,
Cr3C2 – 25NiCr	75%Cr3C2 – 25% NiCr							сопротивление истиранию и сопротивление скольжению

Наплавочные порошки на основе никеля и карбида вольфрама

Марка: Gr-NiBSi+WC60

Внешний вид: серебристый порошок с частичками

сферической формы

Размер частиц: 53 – 150 µm

Свойства: высокая износостойкость в сочетании

с хорошей наплавляемостью.

Применение: наплавка рабочих поверхностей долот PDC и других изделий, требующих высокой

износостойкости поверхности.

Химический состав, %(вес.):

Содержание компонентов %	С	В	40% NiBSi Si	Fe	Ni	60 % C	6₩C ₩
Минимум	-	2.70	2.80	-	Баланс	6.1	Баланс
Максимум	0.06	3.00	3.10	0.50	Баланс	6.1	Баланс

Гибкий шнур на никелевой основе

Марка: G-65 **Состав:** 65% - WC

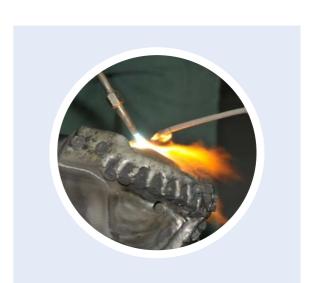
35% - Ni

Диаметр: 4.0, 5.0, 6.0 и 8.0 мм **Длина:** в бухтах по 15 метров

Физические характеристики:

Твёрдость: WC - не менее 2200 HV, матрицы- 400 - 500 HV

Диапазон плавления – 1050 - 1150°C


Вес бухты - 15 кг

Описание и область применения:

Материал представляет собой гибкий шнур с сердечником из никелевой проволоки и оболочкой из зёрен карбида вольфрама.

Предназначен для нанесения очень прочного износостойкого покрытия.

Типичные области применения: изготовление долот PDC, и другого скважинного инструмента, восстановление изношенного инструмента.

Твердосплавные изделия

Изделия из спечённых твёрдых сплавов – основной компонент всех износостойких элементов буровых инструментов. Твёрдый сплав на основе карбида вольфрама со связующим веществом кобальтом обладает рядом уникальных свойств, обеспечивающих его самой широкое использование в бурении.

Высокое и стабильное качество нашей продукции обеспечивается применением высокотехнологичного оборудования на всех стадиях производства. Изготовление смесей для прессования производится в установках сушки распылением, где одновременно вводится в смесь и пластификатор – парафин или полиэтиленгликоль. Прессование происходит на высокоточных механических прессах фирмы DORST. Спекание производится на вакуумных печах совмещая этот процесс с высоким давлением, так называемый Sinter-HIP процесс. Это позволяет получать беспористый высокопрочный твёрдый сплав. Объёмный контроль качества всех параметров сплава на самом современном оборудовании плюс научно-исследовательские работы в данной области позволяют поддерживать самый современный уровень качества наших изделий.

Твердосплавные зубки, пластины и вставки

Использование в производстве зубков самых передовых технологий, контроль трещиностойкости и других параметров, обеспечивает высокую эксплуатационную стойкость твердосплавных зубков при бурении. Высокое качество твёрдого сплава позволяет использовать для повышения скорости бурения более агрессивные формы зубков.

Основные марки твёрдых сплавов для производства зубков:

Марка сплава	Co %	Плотность г/см ³	Твёрдость HRA/HV	Коэрци- тивная сила, кА/м	Предел прочности при поперечном изгибе, Н/мм ² Не менее	Рекомендации по применению
YK05	6.0	14.82–14.98	1370–1490	11.2–12.7	2800	Подходит для изготовления зубков с высокой износостойкостью и ударной стойкостью
YK10	8.0	14.60–14.76	1200–1320	7.3-8.3	2900	Для зубков малых и средних размеров для бурения малой и средней крепости пород
YG8C	8.3	14.55-14.75	≥87.5	7.3-9.6	2900	
KD30	10.0	14.43-14.63	88.1–89.1	7.0–10.5	3000	Для зубков шарошечных долот с повышенной износостойкостью
KD40	10.0	14.43-14.63	87.2-88.2	5.6-7.8	3000	Наиболее универсальный сплав для зубков основных рядов шарошечных долот
KD50	14.8	13.95–14.10	85.2–86.1	4.0-6.0	3050	Для зубков с большим вылетом для бурения мягких и средних пород
KD60	16.0	13.85-14.0	85.0-86.5	4.6-6.0	2500	

ВОЗМОЖНО ИЗГОТОВЛЕНИЕ ЗУБКОВ ИЗ ДРУГИХ МАРОК СПЛАВА, НЕ УКАЗАННЫХ В ДАННОЙ ТАБЛИЦЕ.

ГРИНС ОКАЗЫВАЕТ УСЛУГИ ПО ПОДБОРУ ОПТИМАЛЬНОЙ МАРКИ СПЛАВА ДЛЯ КОНКРЕТНЫХ УСЛОВИЙ БУРЕНИЯ.

Зубки изготавливаются по чертежам заказчика или по стандартной спецификации ГРИНС и поставляются как в шлифованном, так и не в шлифованном виде. Шлифовка зубков по диаметру выполняется с высокой точностью (до 12 мкм) и чистотой поверхности (Ra0.4)».

Зубки сферические, параболические для бурения в крепких породах и для ударно-вращательного бурения.

Зубки клиновидной и специально разработанных форм для бурения с максимальной скоростью в мягких и средних породах.

Зубки и вставки с плоской поверхностью гладкие и рифлёные для защиты корпуса долот и шарошек от износа при трении о стенки скважин.

Резцы PDC

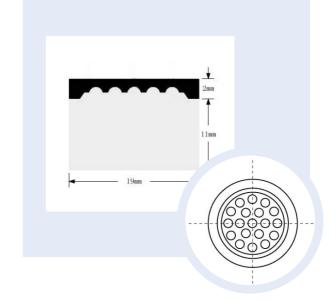
Резцы РDC представляют собой слой поликристаллического алмаза, спечённого в единое целое с твердосплавной подложкой при высоком давлении и температуре. Они сочетают в себе твёрдость и износостойкость алмаза с ударопрочностью твёрдого сплава и обеспечивают более быстрое и экономичное бурение.

Марки PDC резцов:

HNQ: в основном используется для защиты от износа

HR2: высокая износостойкость, применяется для средних и твёрдых пород

HR3: максимально высокая износостойкость, применяется для средних и твёрдых пород


ПО ЗАКАЗУ КЛИЕНТА МОГУТ ПОСТАВЛЯТЬСЯ ВЫЩЕЛОЧЕННЫЕ РЕЗЦЫ.

Основные типоразмеры резцов:

Размеры резцов PDC (мм)							
Специфи- кация	Диаметр	Высота	Толщина алмаза	Фаска алмаза	Фаска подложки		
0808	8	8	1.8-2.0	0.3x45°	0.5x45°		
1008	10	8	1.8-2.0	0.3x45°	0.5x45°		
1013	10	13.2	1.8-2.0	0.3x45°	0.5x45°		
1308	13.44	8	2.0-2.2	0.3x45°	0.5x45°		
1313	13.44	13.2	2.0-2.2	0.3x45°	0.5x45°		
1613	15.88	13.2	22.2-2.5	0.3x45°	0.5x45°		
1616	15.88	16	22.2-2.5	0.3x45°	0.5x45°		
1913	19.05	13.2	22.2-2.5	0.3x45°	0.5x45°		
1916	19.05	16	22.2-2.5	0.3x45°	0.5x45°		
1919	19.05	19.05	22.2-2.5	0.3x45°	0.5x45°		
2213	22	13.2	22.2-2.5	0.3x45°	0.5x45°		
2216	22	16	22.2-2.5	0.3x45°	0.5x45°		
2219	22	19.05	22.2-2.5	0.3x45°	0.5x45°		
Допуски	±0.03	±0.1	±0.1	±0.05	±0.1		

Предлагаем полный размерный спектр резцов PDC под требования заказчика. HNQ и HR являются стандартными сериями, для особых условий разработаны серии TS и RX

В ассортименте имеются резцы с толщиной выщелоченного слоя от 300 до 500 мкм и остаточным содержанием кобальта 0.5%.

КРОМЕ ВЫШЕУКАЗАННЫХ ТИПОРАЗМЕРОВ ИМЕЕТСЯ ВОЗМОЖНОСТЬ ПОСТАВКИ ЛЮБЫХ ДРУГИХ ВИДОВ РЕЗЦОВ ПО ЗАКАЗУ КЛИЕНТА.

Высокому качеству резцов способствует постоянная работа по совершенствованию технологии их изготовления.

- 1. Повышение производительности алмазного слоя путём разработки и совершенствования соотношения порошков алмаза.
 - 2. Повышение ударной прочности резцов PDC за счёт применения новых сплавов для подложки.
 - 3. Соединение слоя алмаза и твёрдого сплава через специальную ноу-хау слоистую структуру.
- 4. Улучшение внутренней структуры спечённого цилиндра за счёт более равномерного поля давления и температуры.
- 5. Регулирование процесса спекания для повышения прочности соединения алмазов в алмазном слое.
- 6. Увеличение толщины алмазного слоя, толщина алмазного слоя может быть разработана по заказу клиента.

При производстве резцов обязательными являются три вида контроля качества:

- 1. Контроль термической стойкости
- 2. Контроль износостойкости
- 3. Контроль ударной стойкости

Гидромониторные насадки и втулки

Резьбовые и гладкие гидромониторные насадки по чертежам заказчика для повышения эффективности промывки забоя при бурении.

ВОЗМОЖНО ИЗГОТОВЛЕНИЕ НАСАДОК ПО ЧЕРТЕЖАМ ЗАКАЗЧИКА.

Клапанные пары шар/седло

Абразивная и коррозионная среда, которой является промывочная жидкость при бурении в сочетании с высоким давлением предъявляет особые требования к элементам насосов, перекачивающих эту жидкость. Основным изнашиваемым элементом таких насосов являются клапанные пары — шары и сёдла.

В связи с такими условиями работы основными материалами для изготовления клапанных пар наряду с нержавеющей сталью являются твёрдые сплавы на основе карбида вольфрама.

Компания ГРИНС поставляет клапанные пары как в стандартном варианте на кобальтовой связке, так и в коррозионностойком варианте с никелевой связкой или из кобальтового сплава типа стеллит. Геометрические размеры шаров и сёдел полностью соответствуют требованиям спецификации 11 АХ АРІ, а также ОСТ 26-16-06-86 и ГОСТ Р 51896-2002. Высокая точность изготовления и прочность сплава обеспечивают долговременный ресурс работы.

Исполнение как в стандартном варианте (на кобальтовой связке), так и в коррозионностойком варианте (с никелевой связкой). Высокая точность изготовления и прочность сплава обеспечивают долговременный ресурс работы.

Размеры клапанных пар по спецификации API – V11

Типоразмер	Диаметр шара, дюйм(мм)	Высота седла, дюйм(мм) +0.02/-0.01 (+0.51/-0.25)	Наружный диаметр седла, дюйм(мм) +0.000/-0.005 (+0.00/-0.13)	Внутренний диаметр седла, дюйм(мм) +/-0.050 (+/-1.27)
V11-106	0.625(15.88)	0.500(12.70)	0.793(20.14)	0.460(11.68)
V11-125	0.750(19.05)	0.500(12.70)	0.918(23.22)	0.550(13.97)
V11-150	0.938(23.83)	0.500(12.70)	1.168(29.67)	0.670(17.02)
V11–175	1.125(28.58)	0.500(12.70)	1.388(35.26)	0.825(20.96)
V11-200	1.250(31.75)	0.500(12.70)	1.478(37.54)	0.960(24.38)
V11-225	1.375(34.93)	0.500(12.70)	1.720(43.69)	1.060(26.92)
V11-250	1.688(42.88)	0.500(12/70)	2.010(51.05)	1.310(33.27)
V11-375	2.250(57.15)	0.750(19.05)	3.072(78.03)	1.700/1.880 (43.18/47.75)

Размеры клапанных пар по ОСТ 26-16-06-86

Обозначение	Диаметр шара мм	Наружный диаметр седла мм	Внутренний диаметр седла мм	Высота седла мм
HB29	15.8750	22.35	13.73	12.4
HB32	19.0500	25.35	16.18	12.7
HB38	23.8125	31.35	20.60	14.9
HB44	26.9880	36.35	23.10	15.0
HB57	34.9250	48.35	29.90	15.0
HH44	28.5750	36.35	24.50	15.0

Материалы для изготовления клапанных пар

Обозначение по АРІ	Описание	Твёрдость	Состав
A1	Нержавеющая сталь	Шар HRC 58-65 Седло HRC52-56	Хромоникелевая сталь
В1	Кобальтовый сплав литой	Шар HRC 56-63 Седло HRC50-56	Сплав с вольфрамом и хромом на кобальтовой основе (типа стеллит)
B2	Кобальтовый сплав порошковый	Шар HRC 53-60 Седло HRC51-57	Сплав с вольфрамом и хромом на кобальтовой основе (типа стеллит)
C1	Твёрдый сплав	шар HRA 88-89 седло HRA 88-89	Твёрдый сплав на основе карбида вольфрама на кобальтовой связке
C2	Твёрдый сплав (никель)	шар HRA 89-90.5 седло HRA 87.5-89	Твёрдый сплав на основе карбида вольфрама на никелевой связке
C3	Твёрдый сплав (титан)	Шар HRA 89–90.5	Твёрдый сплав на основе карбида титана на кобальтовой связке

Втулки и уплотнительные кольца для насосов

Твердосплавные втулки в качестве подшипников скольжения и твердосплавные кольца для торцевых уплотнений широко используются в конструкции насосов в нефтегазовой отрасли при работе на нефтяных скважинах содержащих песок и скважинах высокого давления с высоким содержанием серы.

Изделия обладают высокой прочностью, износостойкостью и сопротивлению повышенным температурам и коррозии.

Марка сплава	Co %	Плотность г/см ³	Твёрдость HRA	Предел прочности при растяжении Н/мм²	Рекомендации по применению
YG6X	6.0	14.90	91.5	1800	В центробежных насосах, в качестве подшипников скольжения, втулок, уплотнительных колец, опор валов.

Изделия из бериллиевой бронзы

Свойства и область применения:

Характерными свойствами бериллиевой бронзы являются высокая твёрдость, упругость, парамагнетизм, хорошая теплопроводность.

Применяются в качестве элементов подшипников скольжения, немагнитных деталей телеметрических систем и др.

ВОЗМОЖНО ИЗГОТОВЛЕНИЕ ЛЮБЫХ ПАРТИЙ ИЗДЕЛИЙ ПО ЧЕРТЕЖАМ ЗАКАЗЧИКА.

Марка	Ве	Со	Ni	Co+Ni	Co+ Ni+Fe	Al	Fe	Si	Pb	Cu
C17200	1.80 – 2.00 %			Min 0.2%	Max 0.6%	Max 0.15%	Max 0.15%	Max 0.15%	Max 0.005%	Баланс
C17300	1.80 – 2.00 %			Min 0.2%	Max 0.6%	Max 0.15%		Max 0.15%	0.20 - 0.60 %	Баланс
C17500	0.40 – 0.70 %	2.40- 2.70%					Max 0.10%			Баланс
C17510	0.20- 0.60%		1.40- 2.20%				Max 0.10%			Баланс

